Aerozol czarnego węgla i ozon wpływają na klimat
Aerozol czarnego węgla (sadza) dostaje się do atmosfery zarówno w wyniku procesów naturalnych, jak i ludzkiej działalności. Do największych sztucznych źródeł należy wypalanie lasów i niepełne spalanie paliw stałych. W czasie swojego krótkiego okresu trwania w atmosferze cząsteczki aerozolu efektywnie absorbują promieniowanie słoneczne, wpływając tym samym na wielkość ocieplenia. Jest to szczególnie istotne w kontekście regionalnym.
Wpływ na powierzchnię Ziemi
Jego koncentracja jest największa na półkuli północnej. Osadza się na powierzchni ziemi i poprzez absorpcję światła słonecznego powoduje jej zwiększone nagrzewanie.
Współczynnik odbicia śniegu
Znalazłszy się w śniegu zmienia jego właściwości fizyczne, ponieważ zwiększa absorpcję promieniowania słonecznego. Jest to tzw. „efekt albedo śniegu”, który wzmacnia proces nagrzewania się planety. Jego wpływ jest porównywalny z oddziaływaniem CO2. Efekt albedo jest najsilniejszy w wyższych szerokościach geograficznych półkuli północnej – wiosną szybciej topnieje śnieg, więc powierzchnia Ziemi może zakumulować więcej ciepła.
Cyrkulacja regionalna i zmiany wielkości opadów
Aerozol czarnego węgla wywołuje zmiany w rejonach, gdzie jego stężenie jest znaczne, czyli m.in. w międzyzwrotnikowej strefie konwergencji i w systemie monsunów w Azji.
Mechanizm wpływu tego aerozolu na wymienione procesy oraz na zmiany właściwości chmur nie jest jeszcze w pełni poznany. Pewne jest jednak, że ma on swój znaczący udział w procesie globalnego ocieplenia. Dlatego redukcja jego emisji powinna być jednym z głównych kierunków polityki klimatycznej. Jeżeli emisje tego aerozolu będą zmniejszane wraz z redukcją innych gazów cieplarnianych, zmiany klimatyczne zostaną znacznie złagodzone.
2. Ozon (O3)
Jest zaliczany do gazów cieplarnianych. W niższej warstwie atmosfery – troposferze (do 10 km wys.) może wpływać na jakość powietrza i stan klimatu. Gdy występuje w nadmiarze, wchodzi w reakcje chemiczne z innymi związkami chemicznymi, stwarzając zagrożenie dla zdrowia organizmów żywych. Wyżej w stratosferze (10-50 km) działa jak ochronny parasol Ziemi – „warstwa ozonowa” absorbuje dużą część szkodliwego promieniowanie UV-B i ciepła ze Słońca. Od lat 70. ubiegłego wieku na skutek emisji do atmosfery węglowodorów (m.in. freonów) obserwuje się ubożenie warstwy stratosferycznego ozonu – zjawisko to znane jest pod nazwą „dziury ozonowej”. Z tej przyczyny więcej promieniowania UV-B dociera do powierzchni planety. Protokół Montrealski, podpisany w 1980 roku ma doprowadzić do redukcji zużycia i produkcji substancji zubożających warstwę ozonową.
Przy powierzchni ozon łączy się z różnymi zanieczyszczeniami, m.in. tlenkami azotu (NOx), emitowanymi podczas spalania paliw kopalnych. Jego stężenie na tej wysokości wzrosło dwukrotnie w XX wieku. Może uszkadzać rośliny, co zmniejsza ich zdolność do pochłaniania CO2. Kontrola stężenia ozonu w atmosferze ma ogromne znaczenie dla ochrony klimatu.
Met Office jako pierwsze na skalę globalną zbadało zależność stanu klimatu od stanu pokrywy roślinnej. Analizy ściśle wskazują, że im większa jest kontrola jakości powietrza, tym więcej węgla mogą zgromadzić gleba i rośliny. Najlepsze wyniki osiągnięto dla Europy i Ameryki oraz rozległych obszarowo lasów. Badania ponadto pozwalają stwierdzić, że obniżając stężenie NOx w atmosferze można zmniejszyć uszkodzenia roślin, a co za tym idzie, zahamować ocieplenie klimatu.
Znaczenie badań dla polityki rozwojowej
Dzięki przeprowadzaniu symulacji na modelach klimatycznych można lepiej zrozumieć zależności pomiędzy emisją gazów cieplarnianych a wzrostem ocieplenia klimatu oraz pomiędzy różnymi rodzajami zanieczyszczeń. Nowa analiza Met Office może stanowić rzetelną podstawę dla IPCC przy sporządzaniu kolejnego raportu.
Badania nad czarnym węglem i ozonem pozwoliły wysnuć pewne wnioski: kontrola stężenia czarnego węgla w atmosferze może pomóc w krótkim czasie zmniejszyć efekt ocieplenia klimatu, z kolei zawartość ozonu, silnie związana z występowaniem NOx, wpływa na stan wegetacji, a przez to wysokość stężenia CO2. Wyniki te pokazują, że polityka jakości powietrza może się znacznie przyczynić do zahamowania procesu globalnego ocieplenia.
Modelowanie klimatyczne wymaga jeszcze dalszych badań i włączenia do nich szeregu procesów, które w najnowszym modelu Met Office nie zostały jeszcze uwzględnione, a mogą mieć duży wpływ na zmiany klimatyczne:
• skutki depozycji czarnego węgla w wyższych szerokościach geograficznych;
• pozytywny i negatywny wpływ ozonu na klimat;
• rozmarzanie wiecznej zmarzliny a wzrost stężenia węgla w atmosferze;
• dostawy wody słodkiej do wód oceanicznych w wyniku dynamicznych procesów w pokrywie lodowej;
• proces uwalniania metanu w Oceanie Arktycznym.
Poznanie tych procesów i włączenie ich do kolejnych symulacji może pomóc w lepszym zrozumieniu mechanizmów rządzących zmianami klimatycznymi. Z kolei nowe modele, biorące pod uwagę wiele różnych czynników ziemskiego systemu i skomplikowanych interakcji zachodzących pomiędzy nimi, pozwolą opracować rzetelne i bardziej prawdopodobne prognozy. Zrozumienie tych zjawisk jest niezbędne do dalszego wyznaczania kierunków polityki rozwojowej i mitygacyjnej.